Un sistema con n incógnitas se puede representar en el n-espacio correspondiente.
En los sistemas con 2 incógnitas, el universo de nuestro sistema será el plano bidimensional, mientras que cada una de las ecuaciones será representada por una recta, si es lineal, o por una curva, si no lo es. La solución será el punto (o línea) donde intersecten todas las rectas y curvas que representan a las ecuaciones. Si no existe ningún punto en el que intersecten al mismo tiempo todas las líneas, el sistema es incompatible, o lo que es lo mismo, no tiene solución.
En el caso de un sistema con 3 incógnitas, el universo será el espacio tridimensional, siendo cada ecuación un plano dentro del mismo. Si todos los planos intersectan en un único punto, las coordenadas de éste serán la solución al sistema. Si, por el contrario, la intersección de todos ellos es una recta o incluso un plano, el sistema tendrá infinitas soluciones, que serán las coordenadas de los puntos que forman dicha línea o superficie.
Para sistemas de 4 ó más incógnitas, la representación gráfica no es intuitiva para el ser humano, por lo que dichos problemas no suelen enfocarse desde esta óptica.
x + y = 6; x - y = 2
0 comentarios:
Publicar un comentario